
~

N 8 8 - 1 7 2 3 0

TASK ALLOCATION IN A DISTRIBUTED COMPUTING SYSTEM

Walter D. Seward
Air Force Institute of Technology

Department of Electrical and Computer Engineering
Wright-Patterson AFB, OH 45433

ABSTRACT

Distributed computing offers the poten-
tial for improved system's performance
for many applications. Critical to the
realization of this performance im-
provement is a methodology for task al-
location which considers both the
application requirements and the system
architecture. This paper examines a
conceptual framework for task allocation
in distributed systems and discusses
application and computing system
parameters critical to task allocation
decision processes. The paper addresses
task allocation techniques which focus on
achieving a balance in the load dis-
tribution among the system's processors.
That is, equalization of computing loact
among the processing elements. Examples
of system performance are presented for
specific applications. Both static and
dynamic allocation of tasks are consi-
dered and system performance evaluated
using different task allocation method-
ologies.

INTRODUCTION

Recent advances in the development of
microcomputer systems has irxreased
interest in the use of distributed
computing systems. Certain applications
such as the Battle Management and
Command, Control, and Communications
(BM/C3) requirements of a' strategic
defense system appear naturally as
distributed computational systems.[l] In
addition, despite the impressive speed of
the current generation of computers,
their architecture limits them to a
mostly serial approach to computation,
.and limits their usefulness for problems
that are computational intensive and
which may require processing speeds
upwards of 100 million operations per
second. Physical limits suggest that
these traditional, serial architectures
offer little hope of large performance
improvements. Distributed and parallel
processing systems offer an opportunity

for improved system performance,
reliability and flexibility. Critical to
the realization of increased system
capabilities is an effective means of
allocating the processing tasks among the
system's Computing resources. Without an
effective scheme of task allocation, the
performance of the distributed system can
be degraded to something less than that
of one of the system's single processors.

This paper presents preliminary results
of research performed to analyze the
performance of task allocation method-
ologies for a distributed computing
system. For this paper, distributed
processing is considered as a special
case of parallel processing where the
processing elements are loosely coupled
and any exchange of information and
control of the system must take place via
an interconnection structure instead of
by means of shared memory. However, the
fundamental approaches used in this work
do not preclude use with a tightly
coupled parallel processing system. The
appli-cation program used in this
analysis was that of Integer Linear
Programming (ILP). ILP is representative
of a class of algorithms which is
applicable to the solution of several
problems within the BM/C3 environment of
strategic defense. Results of this
analysis show that dynamic task
allocation can provide significant
performance improvement. Also discussed
are planned extensions to this research.

PERFORMANCE OF DISTRIBUTED SYSTEMS

Evaluation of alternative system
implementation must be based a relevant
metrics. Because increased speed of
computation is one of the primary reasons
for using parallel systems, the speed of
the parallel algorithm is one of the most
important parameters for system
evaluation. The most frequently used
measures of parallel and distributed
system perforranse arp

173

speed-up and efficiency. These
measures are defined as follows: [2]

worst-case running time of fastest

for the problem
known sequential algorithm

(1) s =

worst-case running time of
parallel algorithm

worst-case running time of fastest

for the problem
known sequential algorithm

E =
,-\
(L J

cost of parallel algorithm where,

S - Speed-up
E = Efficiency

and the cost of parallel algorithm is
defined to equal the product of the
parallel running time and the number of
processors used.

The ratio of single processor time to
parallel system time can be expressed
as S = T1/TN where T1 is the

single processor time and the computa-
tion time using N processors, T , is
determined by the following formupa:

TN = TS + Max (Tc) + TW (3)

where
TN Computation Time for N

TS = Start-up Time

Max (Tc) - Time required for
processors

last busy processor
to complete its
computation

TW = Wind-Down Time.

Start-up time measures the time that is
required to initialize the system
before any computations can begin.
Wind-Down time refers to the time
required to collect from the various
system processors and analyzing or
tabulating into a final product. The
time required for the last busy
processor to complete its computations
includes several elements. Included is
all of the time during which this
wrocessor and all other processors in

Maximum speed-up, which is the
overriding objective for most parallel
processing applications, occurs when
the parallel processing time is
minimized. The elements of the equa-
tion for the parallel processor time
are not independent. The algorithm,
the architecture and their implemen-
tations determine the specifics of the
relationships among these parameters.
However for applications of interest
the predominant factor, by orders of
magnitude, is the computation time.
Thus, speed-up is maximized when
Max(Tc) is minimized.

Balanced Computational Load

There are three rules of thumb for
minimization of Max(T) and, therefore,
maximizing the perfoAance of parallel
processing systems: [3]

(1) Distribute the computation load
evenly:

(2) Maximize the computation time to
communication time ratio:

(3) Minimize communication distance.

These rules of thumb, unfortunately,
may conflict. For example, in order to
maintain a balanced computational load
additional communications overhead may
be required. Thus Max(T) , which
includes both computation an8 required
interprocessor communications, must be

Just considered in its entirety.
maintaining a balanced workload with
out consideration of associated
overhead and memory system costs may
result in decreased system performance.
This is the task allocation issue being
addressed in this research.

TASK ALIBCATION

Concepts and techniques for task
allocation or task scheduling have
evolved from the considerable body of
work on job-shop or assembly-line
problems. [4 , 5] Work in this area has
been has been extensively documented in
management science, operations re-
search, and computer science and
engineering literature. The two funda-
mental approaches to task allocation
are static and dynamic. Each of these
techniques has advantages and dis-
advantages which are a function of the
application and the system archi-
tecture. [6]

the system were actually performing
useful computations. Also included is Static Allocation
any idle time, time required to
communicate with other processors, and Static allocation involves the a-priori
time required to perform overhead determination of the allocation of
functions built into the parallel tasks. This method is the least

complex and requires the least overhead algorithm.

174

of the system 'during its operation. In
systems where complete knowledge of the
computational requirements of t h e
application tasks and the system's
operational characteristics are knowr,,
static allocation of task can be the
most efficient. Minimal resources are
required during run-time while
maintaining high levels of efficiency.
But, solution of the static allocation
problem in these cases generally
requires solution by means of an off-
line integer programming problem or
other computational intensive combina-
torial algorithm. Furthermore, when
knowledge of the system operational
characteristic while dedicated to a
specific application, or if the exact
computational requirements are not
known, static allocation is not
generally effective. In these cases,
all advantages of parallelism in the
problem structure and architecture may
be lost and the total computational
load assigned to a small subset of the
available processors.

Dynamic Allocation

Dynamic allocation of tasks is an
attempt at maintaining the most
efficient use of the system's
computational resources by adapting, at
run-time, the load distribution to the
demands of the computational tasks. It
involves assessing the availability of
each processing element to accept
additional work and reallocation of the
total system computational load so that
a stated performance metric is
optimized. The process of obtaining an
optimal result is itself a large-scale
combinatorial optimization problem, and
therefore dynamic allocation techniques
are most often based on heuristic
procedures. Moreover, the difficulty
of the task is increased by lack of
precise information about the
application program's requirements and
the computational characteristics of
the system. These factors must, in
general, be estimated using some method
of heuristic or statistical technique.
The objective of any technique of
dynamic allocation is to optimize the
use of the system communications,
computation, and memory resources, but
this requires minimization of overhead
for execution of the allocation
routine, which requires specific
knowledge of the distributed system
architecture.

DISTRIBUTED SYSTEM ARCHITECPURE

Evaluation of the system's performance
require consideration of both communi-
cations and computational dependent
parameters specific to the system

implementation. The performance of any
dynamic task allocation method depends
upon not only the application, but
these charact.eristics of the computing
system's architecture.

The distributed architecture system
used for this study was the Intel iPSC
system.[3] This system is based on a
hypercube topology where each node of
the topology is a processor with its
own memory and communications
capability. The system operation is
based on a process model of computation

of 2 processors each with direct
communications with its n neighbors.
The number n defines the dimension of
the cube. Figure 1 illustrates a cube
of dimension 4 .

hyperpbe supported or by binary message n-cube passing. is a network A

Figure 1 Dimension Four Hypercube.[3]

The iPSC can be configured with modules
of 16, 32, 64 or 128 interconnected
nodes. The processors which form the
elements of the hypercube are called
nodes. Each node is numbered by aR n-
bit binary number between 0 and 2 -1.
Node 0 is connected to a separate
processor called the "cube manager"
which provides the input and output
link between the nodal processors and
the outside world.

Communications within the cube is based
on a static routing algorithm which
routes .messages by a minimum number of
hops along the edges of the cube.
Although there is support for
communications processing on each node,
the nodal processor, an Intel 80286
chip, must perform some of the tasks
associated with forwarding a message.
Hence the pattern of communications
within the application's implementation
may have a significant impact on the
overall performance.

175

The iPSC system provides support for
software developed in 80286 assembly
language, C, and Fortran 77. The
algorithms developed for this paper
were implemented in Fortran 77. This
language was chosen because compiled
Fortran 77 is faster than C on the
iPSC.

INTEGER LINEAR PROGRAMMING

The specific problem analyzed in this
research is a distributed computer
algorithm for the solution of Integer
Linear Programming problems. In matrix
representation, Integer Linear Program-
ming (ILP), is an optimization problem
which consists of finding a vector x
which maximizes (minimizes) a linear
objective function C*z subject to a set
of linear constraints fi*z = E, 5 2 0,
and 2 integer. A is an m by n matrix,
- C is a 1 by n row vector, and and z
are n by 1 column vectors all of which
are integer.[7] Such problems are
frequently posed as problems with
inequality constraints which must be
transformed to the required format by
adding s 1 ac kat and alsurplusla
variables.[7] Although the problem is
easily expressed it is extremely
difficult to solve in practice. It has
been shown, in fact, that ILP is NP-
complete.[8]

Among the techniques frequently used to
solve the ILP is an enumerative
technique called the branch-and-
bound. [5] A naive approach to
enumerative solution of an ILP involves
the explicit examination of each
possible integer vector to determine
the one which results in maximization
(minimization) of the objective
function. However, even for relatively
small ILP'S the number of
possibilities, while finite, becomes
excessively large. Consider for
example an ILP with ten unknown
variables each of which has an integer
range of zero to ten. There are more
than ten billion possible solutions to
this problem. Explicit enumeration of
the possible solutions quickly becomes
overwhelming.

The branch and bound method of solution
of the ILP uses a combination of
explicit and implicit enumeration to
reduce the total number of permutations
which must be examined. The branch and
bound technique can best be described
in terms of a search tree. The heisht
of the tree is determined by the number
of integer variables, n, in the ILP. A
path from the root node to a leaf node
which satisfies all problem constraints
corresponds to a feasible integer
solution. At a given level of the tree
the nodes correspond to specific

integer values for one of the problem
variables. Figure 2 illustrates a
search tree for a three variable ILP
where the x has a domain of (0,1,2)
and x2 and k, each have a domain of
(0 1 1) .

Initially the ILP algorithm performs an
unconstrained solution to the linear
programming problem which results if no
integer constraints are applied. If no
feasible solution exists to the
unconstrained problem, then no solution
exists for the ILP. The value of the
objective function for the feasible
solution to the unconstrained problem
represents an upper (lower) bound on
the ILP objective function for the
maximization (minimization) problem.

The hranch and bound algorithm used in
this research performs a depth first
search of the enumeration tree
succes:;ively constraining the integer
variables to specific values. As each
variable is constrained, the value of
the objective function for the feasible
partial solution is compared with the
existing lower (upper) bound to
determirir- if further search along that
path is justified. The lower (upper)
bound is determined by the maximum
(minimum) objective function value for
feasible integer solution to the ILP.
As a new larger (smaller) bound is
determined it replaces the existing
lower (upper) bound. The bound defined
by the feasible integer solutions
determines the criteria for eliminating
nodes from the search tree before
extending them. Any partial solution
which falls below (above) the feasible
solution bound cannot represent an
improved solution to the maximization
(minimization) problem.

Distributed Computation of ILP
The ILP was implemented on the Intel
iPSC distributed computing system in
the following fashion:

1. One node of the hypercube is
designated the responsibility of
coordinating the computation of the
other processors in the system. This
controller node partitions the problem
space, assigns blocks of the partition
to independent processing elements,
collects intermediate results and
shares these results with the other
processors, and maintains the status of
the progress of the solution.

2. The laworkerla nodes of the
system perform the ILP algorithm on
assigned blocks of the problem space
partition. These nodes inform the
controller node of improved results,
current status in solving the assigned
partition, and if they are idle.

176

x =o x =1 x =o x3=1 x3=o x =1 x =o x =1 3 3 3 3 3 3
x =o x =1 x =o x =1 3 3 3 3

Figure 2 Example Enumeration (Search) Tree

Computation performed by the worker
nodes includes the branch-and-bound
algorithm. These nodes send to the
controller node the objective function
value for each improved integer
feasible solution. This information is
shared with all other nodes so that
more rapid implicit enumeration is
possible. These nodes also provide the
the controller node with a status
vector which represents their progress
in solving assigned subproblems of the
ILP problem.
RESULTS AND ANALYSIS

This section presents the results of
experiments performed using the Intel
iPsc to compute the ILP for a group of
problems which range in complexity from
easy to moderately difficult. Table I
contains the descriptions of these
problems. All of these problems are
stated in the form of &*z 5 e . The
performance of these ILP problems using
differing configurations of the iPSC
and differing methods of task alloca-
tion are discussed in the following
sections.

Baseline Performance

A baseline of system performance for
the four problems is presented in Table
11. The processor time required to
perform a sequential version of the ILP
computation using a VAX 11/785 and a
single node of the iPSC are compared.
The ratio of the VAX time to the node
processing time is seen to remain
relatively constant at approximately
3.285. As can be seen for Problem 4 ,

the time required on either system is
excessive for most environments. These
results are based on the depth first
search of the enumeration tree and are
dependent upon the speed with which the
lower bound converges to the optimal
solution. The longer it takes to
converge the larger the problem space
which must be explicitly evaluated.

Table I11 presents the "best case"
times for these problems using a single
node of the iPSC. These results were
obtained by setting the lower bound to
the previously determined optimal value
and allowing the search algorithm to
perform maximal implicit enumeration.
The results show a substantial speed-up
for all but Problem 2 . Problem 2 does
not show the same improvement because
its optimal solution is encountered
early in a depth-first search. Hence,
implicit enumeration quickly dominates
the enumeration scheme even for the
sequential implementation.
The results obtained by this method are
not representative of normal perfor-

They depend upon a-priori mance .
knowledge of the answer. These results
are included so that the parallel
system performance can be compared with
the best possible sequential
performance for the specific algorithm
used.

Static Partition and Allocation

Except for those applications where
knowledge of the problem space is
complete enough for static partition
and allocation to provide sufficient

177

Table I

Integer Linear Programming Problems Used for System Evaluation

Problem 1 Problem 2 [7:370]

5
Objective Function = 4x + 8x2 Objective Function = x3 + x4 + x

+ 3,-
3

Variables Vari ab1 es
xl x2 x3
1 2 3
1 4 1
2

b Xl x2 x3 x4 x5 b
18 2 3 1 2 2 18
6 3 2 2 1 2 15

6 4 15 -6 0 1 0 0 0
0 -7 0 1 0 0

Problem 3 [7:371]

12 Objective Function = x7 + x8 i- x9 + x + x + x 10 11

xl x2
9 7
12 6
15 5
18 4

-12 0
0 -15
0 0
0 0
0 0
0 0

x3 x4
16 8
6 2
12 4
4 18
0 0
0 0

-12 0
0 -10
0 0
0 0

Variables
x5 x6 x7 x8
24 5 3 7
20 8 4 6
4 5 5 5

28 1 6 4
0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

-11 0 0 0
0 -11 0 0

x9 -
8
3
6
2
0
0
1
0
0
0

x10 xll
4 6
1 5
2 1
9 7
0 0
0 0
0 0
1 0
0 1
0 0

x12 b
5 110
8 95
5 80
1 100
0 0
0 0
0 0
0 0
0 0
1 0

Problem 4 [9:236]

Objective Function = -lox1 + 7x2 - x + 12x4 - 2x5 - 8x6
i- 3x7 + x8'- 5x9 - 3 x 1 ~

Variables
x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 b
-3 -12 8 1 0 0 0 0 8 -2 8
0 1 10 0 5

-5 -3 1 0 0
5 3 - 1 0 0
0 0 4 -2 0
0 9 0 -12 7
8 5 -2 -7 1

performance, static techniques tend to
be unsuccessful. System performance
using static partition and allocation
of the ILP problem space depends on the
application program size and the
created subproblem (blocks of the
partition) granularity.

The static algorithm partitions the
problem space into one or more
subproblems per processor. The sub-
problems are allocated first-in-first-
out (FIFO) to any idle processor until
the subproblems created in the original
partition are depleted. Once the list
is empty, processors remain idle after
completing their assigned subproblems.
Insufficient numbers of subproblems
quickly results in system speed which
approaches that of a single processor.
The larger the problem space the more
likely static techniques will not
substantially improve performance.

-1 7 I 0 0 13
0 0 -2 0 -1 -6
0 0 2 0 1 6
5 1 -9 2 0 8

-6 0 2 15 3 12
0 -5 0 10 0 16

This occurs because prevention of
single processor degeneration requires
very large numbers of subproblems which
in turn results in high communications
to computation ratios.

For example, even when the solution of
Problem 4 is tuned by providing the
optimal solution the overall solution
time (with 31 nodes and 2000 sub-
problems per node) is only 15 percent
better than the single processor
performance, and the computational load
is distributed such that one processor
is always busy while the other 30
processors are busy only 4.6 percent of
the time.

Table IV shows the results of static
partition and allocation for varying
problems with the numbers o f sub-
problems fixed at 250 per node. Table
V illustrates the performance of static

178

methods using a range of pa'.tition
sizes on one of the problem sets.
Clearly general techniques must involve
methods other than static allocation.

Dynamic Allocation Procedures

The dynamic allocation procedures
implemented in the algorithms used in
this research incorporate several
heuristic techniques. Maximum
parallelism of the computation results
if all processors initial idle time is
minimized. Toward this end, the
initial static partition and allocation
is performed as specified for the
static algorithm. Once the initial set
of subproblems is depleted, any
processor that becomes idle notifies
the control node of its status. The
control node is responsible for finding
additional work, if it exists, and
interrupting a busy processor so that
the remaining work can be partitioned
and reallocated. It is the procedures
used to determine which processor to
interrupt and how to partition that
processor's work load that incorporate
heuristics.

The decision as to which processor to
interrupt is based on which processor
has been busy for the longest time. It
is assumed that this processor has not
been able to perform implicit
enumerations on most of its subproblem,
and therefore, contains many feasible
integer solutions. Once the processor
is interrupted, the number .of
subproblems to form must be decided.
To form only one subproblem is counter
productive. The time lost to overhead
of interrupt and partition will be
repeated each time a processor becomes
idle. Instead, the partition creates
many subproblems which are used to
create a F I F O problem queue, as is done
for the initial partition, therefore no
other processors are interrupted until
the queue is empty. The number of
subproblems to create for each
interrupt is bounded below by a user
specified minimum and calculated using
a multiplicative factor determined by
the partial solution object function
value and the current maximum feasible
object function. The closer to the
maximum the more subproblems created.
Finally, as the solution 'is approached
the possibility exists for thrashing to
occur. To prevent repeated interrupts
of processors, a minimum busy time can
be specified by the user.

Performance of Dynamic Task Allocation

The results of experiments using the
dynamic task allocation method
described above are presented in Tables
VI and VI1 and Figures 3 and 4 .

The results shown in Table VI
illustrate the performance of the
dynamic partition and task allocation
algorithm on the four test problems.
The results cited are the best measured
performance for each problem as
determined by the algorithm parameters
of number of initial blocks in the
partition, minimum number of blocks in
each partition of an interrupted
subproblem, and the minimum busy time.
There is a clear performance improve-
ment over the static allocation results
shown in Table IV. Moreover , the
performance improvement increases as
the problem complexity increases.

As shown in Table VI, the speed-up for
Problem Four exceeds linear, with
respect to the number of processors,
when compared to the single processor
time without a-priori knowledge of the
solution. With a-priori knowledge of
the solution, the speed-up is less than
linear but substantial. Further
analysis of the the super-linear
performance is in order.
Based on the serial processing
algorithm implemented in this study,
super-linear speed-up is achievable.
However, could the performance of this
algorithm be improved so that it
approaches the performance measured
with a-priori knowledge as shown in the
"best case" performance? If such an
optimal algorithm can be determined,
then it should be applied.
Improvements may come from different
search techniques or improved
implementation techniques; however, it
is questionable if such an algorithm
can be developed for the general case.

The advantage of the parallel solution
of the ILP using a branch and bound
algorithm is that the knowledge
essential to rapid solution of the
problem, the bounds, are determined
more quickly. These results are
broadcast to all computing elements,
thereby accelerating their performance.
If a sequential algorithm can be
optimized, then each of the nodes could
also use the algorithm. The
performance improvement using multiple
processors would approach linear, and
differ only by the overhead associated
with communications, start-up, and
wind-down.

Table VI1 illustrates the performance
of the dynamic scheduling algorithm
applied to Problem Four for varying
numbers of nodes. The speed of
performance improves approximately
linearly with the number of processors.
These results were based on the same
number of blocks in the initial
partitions, the same number of blocks
in the subsequent partition of

179

subproblems, and the same minimum busy
time .
Figures 3 and 4 illustrate the
criticality of the dynamic task
allocation parameters. There exists a
clear indication that specific values
provide s2gnif icant performance
improvements. Moreover, certain values
for the parameters result in B
significant degradation in the
perf ormance. How the lloptimalll
parameters are determined is the
subject of on-going research.

SIJMWiRY

The results illustrate that reasonable
Performance from a distributed
computing system requires some method
of dynamic task allocation. Such an
allocation scheme must consider not
only the application but the
characteristic of the system architec-
ture used for the implementation.
Specifically the processing speed, the
communication subsystem characteris-
tics, and the memory requirements.

The results of pervious experiments
demonstrates the need for an adaptive
algorithm to "tune1' the application
algorithm's performance to the system
architecture. On-going research is
examining the development of automated
techniques for generating the critical
task allocation parameters. Under
consideration are methods of stochastic
estimation and heuristics for
determining the best combination of
allocation algorithm parameters. In
addition, further work is being
performed to improve the serial
algorithm by consideration of different
searck strategies.

TABLE I1

Serial Processing Time
(in Seconds)

PROBLEM INTEL VAX 11/785

(1 NODE)
NUllBER iPSC

1 11.1 3.6
2 49.8 14.8
3 4067.3 1193.6
4 108335.9 32052.0

TABLE I11

"Best Cane" Serial Processing Time

Problem INTEL
nurber ipsc

1 0.795
2 49.685
3 750.295
4 3222.355

(in Seconds)

(1 Node)

Table IV

Static Partition and Allocation
(31 Nodes)

Problem Solution Speed
Number Time UP

(Seconds)

1 4.12 2.69
2 45.81 1.09
3 1689.31 2.41
4 108289.00 1.00

Table V

Problem 3
Static Partition and Allocation

(31 Nodes)

Number
Blocks
Per Node

100
200
500
600
800
1000
1500
2000

Solution
Time
(Seconds)

1691.6
1699.5
1664.3
1736.0
1736.1
1691.7
1691.6
1689.5

Speed
UP

2.4
2.4
2.5
2.3
2.3
2.4
2.4
2.4

Table VI

Dynamic Partition and Allocation
(31 Nodes)

Prob . Solution
Time T1/TN "Best Tln/TN

(See.)
1 3.22 3.45 0.24
2 13.86 3.59 3.58
3 488.23 8.33 1.57
4 155.09 €98.54 20.78

Table VI1

Problem 4
Dynamic Partition and Allocation

Nodes Time T1/TN "Best Tlw/TN
Solution

(Sec.)
4 1233.9 87.8 2.61
8 664.7 163.0 4.85
16 373.7 289.9 8.62
31 155.0 698.94 20.78

180

ACKNOWLEDGENENTS

This research is supported in part by
the Strategic Defense Initiative
Organization. Also, I gratefully
acknowledge the extensive software
development and technical development
of Captain Paul Bailor a PhD student at
the Air Force Institute of Technology.

REFERENCES

I

I 1ntsrrupt

loo I

Solution T i m
(Seconds)

1500 I
1400

1300

1200

1100

1000

900

800

700

600

500

.oo

200 I d
lo: I

1 5 10 10 k0 80 160 150
* u a r or I I locX. I" I"Itl.1 P.r+ItlO"

8OlUtion T h Y. I"ltl.1 Blookm .Iquurr 4 - Rro81.1 4:

1. Seward, Walter D. and Nathaniel J.
Davis IV, llOpportunities and Issues for
Parallel Processing in SDI Battle
Management/C3,11 Unpublished report
Presented at the AIAA Computers in
Aerospace V Conf., Oct 1985.

2. Akl, Selim, PARALLEL SORTING
ALGORITHMS, Academic Press, Orlando,
FL, 1985, pg 8-9.

3 "Intel ipse Concurrent Program-
ming Workshop Notes,I1 Intel Scientific
Computers, Beaverton, OR, 16-20 June
1986.

4 . Coffman, E. G. and Denning, P. J.,
OPERATING SYSTEMS THEORY, Prentice-
Hall, Englewood Cliffs, NJ, 1973.

5. Kohler, W. H. and Steiglitz, K.,
Enumerative and Iterative
Computational Approaches,I1 COMPUTER AND
JOB/SHOP SCHEDULING THEORY, E. G.
Coffman ed., John Wiley and Sons, NY,
1976, pg 229-287.

6. French, S. , SEQUENCING AND
SCHEDULING, Halsted Press, NY, 1982.

7. Garfinkel, R. S. and Nemhauser,

and Sons, NY, 1972.
G. L., INTEGER PROGRAMMING, John Wiley

8. Papadimtriou, C. H. and Steiglitz,
K., COMBINATORIAL OPTIMIZATION: ALGO-
RITHMS AND COMPLEXITY, Prentice-Hall,
Englewood Cliffs, NJ, 1982.

9 . Salkin, Harvey, INTEGER PROGRAM-
MING, Addison-Wesley, Reading, MA,
1975.

181

